Table 3

An example for computing fitting confidence. A randomly chosen spectrum is used to demonstrate the computation of the fitting confidence in detail. In each of the N = 28 numerical rows, the first entry is the score, the second entry records the LDpdf and the third entry corresponds to the LMpdf. Using the LDpdf as the x-coordinate and the Mpdf as the y-coordinate, we perform least square linear regression and find: an intercept value a = -0.00421 and a slope b = 0.9992. Eq. (18) is then used to compute t1 (t1 = 0.0421) and the goodness number, 1 - A(t1|N -2), is found to be 0.96674 through (19). To test the strength of correlation between the second column and the third column, we use (20) to compute r and through (21) we find the t2 value to be 0.99567. Given r = 0.99567 and = 25, through (22) we find the PM value to be 2.58 × 10-27.

S

ln [Dpdf(S)]

ln [Mpdf(S)]


0.0284661

0.479518

0.438266

0.0691319

0.431753

0.407608

0.109798

0.369235

0.351511

0.150463

0.2708

0.270076

0.191129

0.163419

0.163403

0.231795

0.014358

0.031592

0.272461

-0.156812

-0.125259

0.313127

-0.340242

-0.307054

0.353792

-0.551264

-0.513698

0.394458

-0.79275

-0.745095

0.435124

-1.04746

-1.00115

0.47579

-1.34063

-1.28178

0.516456

-1.63587

-1.58688

0.557121

-1.96251

-1.91636

0.597787

-2.2322

-2.27015

0.638453

-2.72001

-2.64814

0.679119

-3.00809

-3.05025

0.719785

-3.52319

-3.4764

0.76045

-3.94211

-3.92649

0.801116

-4.31754

-4.40045

0.841782

-4.72005

-4.89819

0.882448

-5.27305

-5.41962

0.923114

-5.73387

-5.96467

0.963779

-7.04955

-6.53326

1.00445

-6.55707

-7.1253

1.04511

-7.368

-7.74071

1.08578

-9.44744

-8.37942

1.12644

-8.75429

-9.04134


Alves et al. Biology Direct 2007 2:25   doi:10.1186/1745-6150-2-25

Open Data